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Understanding the population’s dietary patterns and their impacts on health

requires many di�erent sources of information. The development of reliable

food composition databases is a key step in this pursuit. With them, nutrition

and health care professionals can provide better public health advice and

guide society toward achieving a better and healthier life. Unfortunately, these

databases are full of caveats. Focusing on the specific case of vegetable

oils, we analyzed the possible obsolescence of the information and the

di�erences or inconsistencies among databases. We show that in many cases,

the information is limited, incompletely documented, old or unreliable. More

importantly, despite the many e�orts carried out in the last decades, there is

still much work to be done. As such, institutions should develop long-standing

programs that can ensure the quality of the information on what we eat in

the long term. In the face of climate change and complex societal challenges

in an interconnected world, the full diversity of the food system needs to be

recognized and more e�orts should be put toward achieving a data-driven

food system.

KEYWORDS

food composition database, food composition, food nutrient, vegetable oils, healthy

nutrition, food guidelines

1. Introduction

In their seminal book published in 1940, McCance andWiddowson started by stating

that: “The nutritional and dietetic treatment of disease, as well as research into problems of

human nutrition, demands an exact knowledge of the chemical composition of food” (1). In

the years to follow, researchers from all over the world—together with private companies

and non-profit organizations—delved into the basic constituents of food in an effort to

understand what we eat and how it affects us. However, despite the many advances, this

task may be far from being complete.
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The information on the composition of food items used

to be compiled in Food Composition Tables (FCTs), although

nowadays, many countries have updated them into Food

Composition Data Bases/Data Banks (FCDBs). For instance, the

EuroFIR project hosts the databases from 30 different countries.

This informationmay come from four different sources: primary

publications, secondary publications, unpublished reports, and

analytical reports (2). In the first, the composition is extracted

directly from journal articles. In the second, food information

is compiled from other sources, which include reviews, books,

reports, or other FCDBs/FCTs. The third source includes reports

that are not publicly available, which include internal use

reports. Lastly, analytical reports can be divided into two

subcategories, namely specific and non-specific. The specific

analytical reports are created to feed a particular FCDB/FCT, and

the non-specific analytical reports contain data not obtained for

this aim. The diversity of sources, analytical methods, variations

of the same food, terminologies, and economic cost makes the

procedure of collecting and integrating all this information a

huge challenge.

The problem with these data is further exacerbated by the

different criteria used in each country to create them, which

can be partially explained by the diverse object pursued by each

project. At least since 1982, there have been several initatives

to harmonize procedures for better data comparability and

interchange, such as INFOODS from FAO or EUROFOODS

from COST (3). Even so, studies from the late 90s showed

that mean intakes of individual nutrients for the same diet

could vary up to 20–45% depending on the database used to

estimate food composition (4). These differences were associated

with systematic and random errors, variations in naming,

terminology, or calculation procedures across databases, and

to the intrinsic differences of food items in different countries.

Many initiatives aimed at solving these problems either failed or

succeeded only for a brief period but then aged badly due to lack

of funding or a driving force (5).

In 1989, the United Nations published the INFOODS

data interchange handbook with guidelines to improve data

on the nutrient composition of foods, as they observed that

such “data do not exist or are incomplete, incompatible, and

inaccessible” (6, 7). In the European context, a clear indicator

that this problem still needs to be solved is the number

of initiatives that periodically appear to address these issues.

From 1985 the NORFOODS group practiced data interchange

among Nordic countries. Even though pioneering, it had some

limitations. For instance, the data exchange was restricted to

the data contained in the databases, but not the metadata

(8). From 1995 to 1999, the EUROFOODS project created

a working group to address the issues of food composition

data management and interchange. The project led to a set

of recommendations to make national databases compatible

and facilitate data interchange (9). Independently, in 1990 the

European Prospective Investigation into Cancer and Nutrition

(EPIC) started. Its objective was to investigate the relationships

between diet, nutritional status, lifestyle, and environmental

factors and the incidence of cancer and other chronic diseases.

Between 1992 and 1999, their participants collected data on

the food intake of a large prospective cohort of over half

a million individuals. The next step was to use FCDBs to

estimate the nutritional intake. By that time, it was already

known that FCDBs could be a significant source of imprecisions

in this estimation (10). For this reason, in 1999, researchers

reviewed the FCDBs available in the participant countries.

They determined that: (i) the FCTs of different countries were

not comparable due to the lack of reporting standards; (ii)

comparisons within tables were problematic due to the use of

very different sources; (iii) some tables were compiled with

outdated information; (iv) there were inconsistent values of

several nutrients across tables. As such, they established the

necessity of creating standardized food composition tables for

the countries involved in EPIC (11). This led to the creation

of the Epic Nutrient Database (ENDB) in 2007, which had

information for 26 components of 550–1,500 foods in 10

countries (12).

Concurrently, from 2005 to 2009, the EuropeanCommission

sponsored the EuroFIR project, whose aim was to develop

a pan-European system on food information (13). In 2010,

the project was extended for 2 years with funding from the

European Community’s Seventh Framework Program under

the name EuroFIR Nexus. It later evolved into a financially

independent Association based in Brussels with the mission of

maintaining high quality, validated national food composition

data. An analysis carried out in 2021 showed that the

documentation of the 26 European datasets included in EuroFIR

was successfully standardized. Yet, full comparability of the

datasets was not guaranteed as there were still many differences

and inconsistencies. For instance, 15 out of the 26 datasets

reported energy values calculated by factored summation with

up to five different methods, while the others reported that

the method was unknown or measured through analytical

procedures (14).

In 2009, the European Food Safety Authority launched a

pan-European food consumption survey - the EU Menu project

(15). To create the methodological guidelines, it was necessary

to obtain certain information on the nutritional composition of

food. To do so, they funded the “Updated food composition

database for nutrient intake project.” This project, finished in

2013, compiled information from 14 national food composition

databases for almost 1750 food products. National datasets

that did not contain all the information borrowed it from

the datasets of other countries that, in the opinion of each

compiler, consumed similar types of food. The percentage of

values borrowed for each dataset ranged from 5 to 90%. Even

extensive datasets borrowed 40% of the values as they were

required to provide data for all elements included in the EFSA

food list. It was presumed that most of the borrowed values
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belonged to seldom consumed foods in the country, and thus

this should not have an important impact on the final intake

estimation (16).

In 2018, the European Commission funded the

Stance4Health project, in which one of the main tasks was

to build a nutritional database to complete the national FCDBs

from the countries involved in the project (Germany, Spain,

and Greece) with as many foods and nutrients as possible. To

add information for nutrients and biocompounds not present

in those databases, they complemented the information with

the FCDBs of Italy, the Netherlands and the United Kingdom,

together with the FAO, USDA, and Phenol-Explorer databases.

This way, the total contribution to the unified database of

each of the three original sources of data was 15 9 and 2%

for Germany, Spain, and Greece. Excluding polyphenols and

focusing only on the 40 nutrients most commonly used in

epidemiology, Spain and Germany had information about 88%

of the nutrients and Greece 40% (17).

It is thus clear that, despite the huge advances produced

in the last 40 years, the creation of a unified, reliable, and

comprehensive database on food composition at the European

level is far from complete. Globally, the situation is not

better. Even though it is crucial to have regional and country-

specific FCDBs, many countries do not have a national

FCDB, and many of the ones that do are outdated, do not

follow international standards in terms of quality, coverage,

accessibility, and documentation. Furthermore, most of them,

including European ones, contain < 25% of analytical data, and

these data are usually old and not generated specifically for the

FCDB (18). The situation is particularly challenging in Africa,

where micronutrient deficiencies are one of the major public

health challenges, and the data gaps on what people are eating

(and their contents) make it very difficult to devise optimal

strategies to improve diets and malnutrition (19).

The main contribution of this paper is to depict and

exemplify the main limitations of the FCDBs. In particular, we

quantify the differences in terms of the number of nutrients and

compounds found in these databases. Further, we explore the

age of the information contained in them, which is a problem

often overlooked. Next, we examine the differences in terms of

the compositions of various vegetable oils in a given FCDB and

the discrepancies between FCDBs for the same oil. Although

differences might be expected, we highlight inconsistencies that

can be found even within the same database. Finally, we discuss

how the development of current machine learning methods

could help solve the problems identified in FCDBs.

2. The problems of current FCDBs

Currently available datasets have important limitations,

including incomplete and outdated data, and not enough

documentation on their sources and assumptions (18, 20). The

nutrient content of food changes over time as a function of

very complex processes involving many different aspects, from

agricultural practices to policy and consumer pressure, and this

is seldom reflected in them (21). Besides, it is common practice

to complete missing elements with values obtained from other

FCDBs or from the general literature. This might be reasonable

for food items produced in few countries and traded globally,

but it is problematic for locally produced food (22–24).

These errors may then propagate to other datasets and

studies that might not be aware of those borrowings.

Furthermore, research data, even if they are of sound analytical

quality, may be biased in the selection of foods. Many FCDBs

also do not include fortified foods, branded foods or a

proper representation of the biodiversity of the food chain,

which may lead to systematic errors in intake estimation (18).

Besides the problems directly related to human nutrition and

epidemiology, data gaps also have significant consequences for

other surrounding areas, such as the sustainability of food

systems and the pursuit of Sustainable Development Goals

(SDGs).

In the following, we describe some of the most important

problems of FCDBs, while in Section 3 we provide the analysis

for the particular case of vegetable oils:

2.1. Missing values

While many countries possess their own FCDBs, the

majority of them contain outdated and incomplete information.

For instance, in 2021, it was determined that in the Dutch

database (NEVO) about 50% of the items were missing

information on the amount of vitamin K, hindering the

assessment of the portion of the population with an adequate

intake (25). This could be explained by the relatively recent

discovery of the precise function of vitamin K in the 1970s

(26), but at the same time shows the complexity of interpreting

missing values. In fact, it is not always clear if there is a

distinction between missing data and a value of zero for certain

nutrients (17, 25). Thus, it is not possible to be sure if the

compound is present or not in the food item, which may lead

to important underestimations of nutritional intake.

2.2. Lack of sources

The lack of proper documentation of these databases

may also hide important issues. Despite recent efforts, many

databases are still missing their source of information, or the

references might be incomplete (27). In the ones that report

their sources, one can see that the information is extracted

from the literature without taking into account important

regional differences. To exemplify the problem, a literature

review constrained to food produced and marketed in Brazil
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showed that the reported values were compatible with the ones

contained in their national database for 81% of the products,

decaying to 37.5% when comparing it with the database from

the United States (USDA) (28).

Similarly, a comparison between the ENDB database (used

in the European project EPIC) and the USDA found a strong

agreement for macronutrients, but a weak agreement for starch,

vitamin D and E, and thiamine-14% of the 28 compounds

common in both datasets (24). This could be read as a sign

of the small differences between the food composition of these

two regions, at least in terms of macronutrients but, as we

will see in Section 3.2 for the particular case of vegetable

oils, many national databases extract their information from a

common source, rather than by direct analysis. As such, when

two databases report similar values, unless their source is stated,

it is not possible to determine if that is because the food is similar

in both regions or if they simply share the source.

2.3. Food fortification

In 2021, the United Kingdom joined the group of over 80

countries in which folic acid fortification of staples is mandatory

in an effort to reduce the risk of neural tube defects in babies

(29). Food fortification is becoming especially important in low-

to middle-income countries, where micronutrient deficiencies

are a widespread problem (30). In 2022, a study carried out

in the Netherlands showed that up to 75% of the population

consumed voluntarily fortified foods, resulting in a 64% higher

intake of habitual micronutrients compared to non-users (31).

Importantly, the study used the values reported on the labels

of the products as an indicator of their composition. However,

a Dutch study from 2017 showed that the vitamin D of some

selected products ranged from 50 to 153% compared to the

declared values (32). Similar results have been reported in the

US (33), which could be related to the overages of vitamins

added by producers to account for shelf life. Thus, using the

reported values might produce under- or over-estimation of

micronutrient intake in the population.

If, instead, one uses the information contained in FCDBs

the problem might be even worse. The lack of information

on the source, the outdated values and the important regional

differences in terms of fortification policies may severely impact

any estimations. For instance, Nordic countries have mild iodine

deficiency and their fortification practices vary. A study from

2016 carried out by the NORFOODS project found out that

the national animal feeding practices could produce two-fold

differences in the iodine content of milk and eggs (34). As

such, even for neighboring countries, the use of borrowed values

for certain products might severely impact the estimations of

nutrient intake and, hence, give rise to misguided policies. Thus,

if it is necessary, the insertion of borrowed data in FCDBs shall

be done only by experts adequately trained to understand the

local nuances of the food and region.

In terms of coverage, even in countries with mandatory

food fortification programs, data is not routinely collected (35,

36). For voluntarily fortified foods, given that they depend

mainly on their producer, more information can be obtained

in databases of branded foods. However, even though that, in

Europe, declaring nutrients added for fortification purposes is

mandatory, the information is not always clear. For instance,

the authors of the Dutch branded food database (LEDA) could

not determine the coverage of data on fortified nutrients due to

unclear food name, ingredient descriptions andmissing nutrient

values (37).

2.4. Nutritional dark matter

Borrowing the term from genetics, nutritional “dark matter”

refers to all those dietary factors that can influence our

health but that remain largely invisible (38). For instance, it

was recently shown that microRNAs present in plant foods

can influence the genetic expression of enteric bacteria (39).

There are thousands of biochemical compounds present in

our food, but FCDBs were built to study only the nutrients

that are essential for life. Due to the lack of data, nutritional

epidemiology has focused on these few dozens of nutrients,

disregarding elements such as amino acids and biogenic amines

(40). While the USDA reports information on about 150

nutritional components present in food, FooDB, a large database

on the chemical composition of food, contains more than 70,000

distinct biochemical compounds as of June 2022 (41). Yet, only

5% of them have been quantified. All this chemical diversity

that remains invisible in common epidemiology may have an

important effect on our health (42). Numerous initiatives are

trying to compile this information from validated peer-review

sources, such as Phenol-Explorer (43), but the current lack of

harmonization introduces important challenges (44).

2.5. Branded foods

National FCDBs usually only document generic, non-

branded foods. There are commercial databases that may

provide this information, but they tend to be expensive and

contain only details on macronutrients. In the European

Union, pre-packaged foods must display their amount of some

selected nutrients, but it is hard to validate their accuracy (45).

Reformulation of processed foods is frequent as manufacturers

try to keep their market share, increase their profits, make the

food healthier, or are even forced to change due to government

policies or consumer pressure. A study on the pizzas offered on

the website of six supermarkets in the United Kingdom showed

that, out of 903 pizzas, 10.8% of them changed their composition
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over 6 months and that 29.9% of them were either discontinued

or new market entries (46). This information is hardly captured

in most studies and, if it is, it might be restricted to the few

nutrients reported in the labels of the product. Furthermore,

many companies may rely on national FCDBs to estimate the

nutritional value of their products rather than using direct

measurements. If the limitations of the data are not clear, errors

may propagate throughout the whole chain (21).

2.6. Outdated and misdated information

Even for raw products, the nutritional composition changes

over time as a consequence of genetic selection, changes in

agricultural practices or feed ingredients for farmed animals

(47, 48). If FCDBs are not routinely updated, they may easily

become obsolete (49). And, if they are, they should properly

document all the changes so that one is aware if they were

produced because the composition of food has changed or due

to the improvement of the analytical techniques. Otherwise, for

research studies over extended periods, variations in nutrient

intake may reflect changes in the data rather than in the dietary

patterns of the population (50). Similarly, dietary surveys must

be analyzed with FCDBs compiled in the same period, or one

risks finding spurious patterns due to the expected composition

changes. Many institutions invest significant efforts in keeping

the information updated, but this is not homogeneous. For

instance, as we will see in Section 3.2, while the Spanish database

has not been updated since 2010, the Danish database updated

its information on coconut oil in 2022. More broadly, in a survey

performed in 2019, researchers found that only 30 out of 107

available FCDBs had been updated in the previous 5 years (51).

2.7. Biodiversity

The differences in nutrient composition among varieties of

the same product can be as important as between different

species. For instance, an orange-fleshed banana fromMicronesia

can have 50 times more vitamin A than the common white-

fleshed bananas, representing the border between nutrient

deficiencies and nutrient adequacy (52). This biodiversity is

seldom acknowledged, and general FCDBs usually report the

information of a single sample or a naive average over different

varieties of the same product. Over 15 years ago, FAO recognized

the importance of biodiversity in nutrition and launched an

initiative to create a database on biodiversity which could

mitigate this lack of information (53, 54). Yet, despite the great

advances produced by this initiative, and the relatively large

size of the database, many common food items are not well-

characterized yet (55). For instance, in the latest version of

the food composition database for biodiversity, published in

2017, there is no information about olives, coconuts, palm or

soybeans (56).

2.8. Climate change

Even though it is still early, research so far depicts a very

complex picture in which some crops might benefit from higher

temperatures—thanks to warmer temperatures—while others,

specially those that require vernalization, will suffer (57). At the

same time, faster growth might result in lower quality products

both in terms of external appearance and internal composition

(58). Changes in CO2 concentration may also have an impact

on nutritional composition (59, 60). Furthermore, besides the

changes directly produced by climate change, it may also be

necessary to select and adapt crops to the new environmental

conditions (51). Maintaining updated FCDBs will be a key

element in devising the sustainable food supply of the future.

And, at the same time, FCDBs can be a great resource for

monitoring biodiversity and climate impacts in food systems.

3. Composition of vegetable oils in
selected FCDBs

Although everyday there are more FCDBs in electronic

format, accessing certain FCDBs can be complicated since some

of them are not free, others are in analogical formats, and they

may even lack an English translation (61). For those in digital

format, in comparing several foods and nutrients, it can also

be challenging to query automatically, and one needs to resort

to manual exploration. Since this is a quite demanding process,

and given their importance in the total caloric intake of the

population, for this analysis, we focus on the particular case of

vegetable oils as a case study.

To provide an overview of the current state of FCDBs, we

have selected six databases covering several regions of the world:

• BEDCA: Is the Spanish FCDB, developed in 2010 as part

of the EuroFIR project and has not been updated since

then (62). It was compiled using the indirect method, that

is, collecting all the information from different sources.

Thus, it may not reflect the regional variability of certain

products. It reports the source of information, but many

references are empty. It does not contain information

on fortified foods, which may impact the estimation

of micronutrient intakes (63). Due to its weaknesses,

Spanish commercial nutritional programs use a variety

of other FCDBs (20). A study from San Mauro Martín

and Hernández Rodríguez (64) studied the nutritional

composition of the same diet estimated using different

Spanish commercial nutritional programs. They showed

that the estimated intake for each nutrient was highly
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heterogeneous, with differences in the range of 8–84%

depending on the program.

• FRIDA: Is the Danish FCDB maintained by the National

Food Institute (Technical University of Denmark) (65). It is

easily accessible, updated frequently, and well-documented.

It is composed by a mixture of direct analysis, information

provided by several danish stakeholders and indirect

information extracted from the scientific literature (66).

• USDA (Food Data Central): Is the FCDB from the United

States Department of Agriculture (67). It is composed of

five different databases, of which the Foundation Foods

is the newest and most advanced. Until 2018 the main

database was the SR Legacy, and it has been regarded for

many years as a gold standard in the field, up to the point

that many FCDBs in the world extracted their information

from it. It is composed of data obtained from direct

analysis, calculations as well as extracted from published

literature.

• TBCA: Is the Brazilian FCDB (68). It is easily accessible and

well-documented, although it lacks English translation. It

contains an extensive selection of local products and their

biodiversity, includingmany varieties for the same product.

These products are mostly directly analyzed in Brazilian

institutions, while for common foods in the world it comes

from international databases such as the USDA.

• NIGERIA: The FCDB from Nigeria is small in

terms of products but has an extensive selection of

the most commonly used in the country (69). The

documentation is scarce, although it reports the source

of information for each product. Yet, they are not

linked to each individual nutrient, and thus where

each value comes from is unclear. The information

is mostly extracted from published literature from

Nigerian institutes—specially for local products—but

also contains information from global sources such as

the USDA.

• SMILING: The SMILING project aims at reducing

micronutrient deficiency among children and women in

South East Asia (Indonesia, Thailand, Cambodia, and

Vietnam) (70). To create optimal diets for those countries,

the first step was to compile regional FCDBs with

information about themost commonly consumed products

in the area, which they did in 2018. Due to the limited

resources, they had to resort to indirect compilation. For

several micronutrients they were not able to obtain local

information and had to use international FCDBs. Besides,

they realized that some of the sources they used were

quite old and might have copied their values from non-

regional sources. Thus, they claim, there is an urgent

need to produce high quality data for local foods in

the region (71). Note that many of these limitations

are also present to some extent in databases of highly

developed countries.

It must be noted that these databases were created through

very different projects and budgets. For instance, BEDCA is the

result of a project to build the first Spanish database using the

EuroFIR standards. The project started in 2004 and finished

in 2010, and thus it has not been updated ever since (20). In

contrast, Food Data Central is a platform hosted by the USDA, a

federal agency from the United States that has been analyzing

foods and conducting human nutrition research for over 100

years (72).

We also complement the previous set with two other

databases:

• FooDB: It is an online database that aims to be the

largest resource on food constituents. It is easily accessible

and well-documented, and reports thousands of chemical

compounds with each food item. Unfortunately, most of

them are not quantified, so the actual amount of reported

nutrients is similar to national FCDBs. The information

is extracted from other FCDBs as well as from public

databases on phenols or pathways. Besides, the main

source of information on nutrients are the USDA and

FRIDA databases, and thus lacks information on regional

biodiversity (41).

• EuroFIR: As previously described, the EuroFIR database is

the result of the original EuroFIR project, which intended

to create a homogeneous database for Europe. In contrast

to the other databases, to access EuroFIR data, it is

necessary to purchase a membership, which was imposed

to assure the long-term sustainability of the initiative (73).

The EuroFIR guidelines are one of the standards used in

the field, and thus the scheme of the database is detailed

and well-documented. However, since the information

populating the database is provided by third parties, its

quality varies greatly (14).

3.1. Data description

For this analysis, we focus on the major vegetable oils in

terms of world supply and distribution: coconut, cottonseed,

olive, palm, palm kernel, peanut, rapeseed/canola, soybean,

and sunflower oils (74). Figure 1 illustrates the amount of

information on these vegetable oils contained in the selected

databases. In Figure 1A we report the total number of

compounds present in each database. According to this, FRIDA

is the database with the largest amount of information,

superseding the USDA database, except for palm oil, for which

FooDB provides an enormous amount of compounds. In terms

of the overall coverage of each oil, palm oil is the most studied

one, followed by peanut oil and olive oil. However, many of

the entries in these databases are 0 (the distinction between

measured 0 and logical 0 is seldom made). If those nutrients are

removed, the depicted scenario changes completely Figure 1B.
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FIGURE 1

Number of compounds and nutrients reported for each vegetable oil in the selected databases (EuroFIR not included). (A) The total number of

nutrients for which the database provides some information, while (B) contains only those nutrients with a quantity larger than 0. In both panels,

the bar plots represent the sum of the values of the same line, and the rows and columns of the matrix are ordered in decreasing order from left

to right and from top to bottom.

Indeed, if we focus only on those nutrients with a reported

presence larger than 0, the USDA turns out to be the database

with the largest amount of information. Besides, the most

studied oil is peanut oil, followed by coconut and sunflower

oils, while palm and olive oil move to the 5th and 7th positions,

respectively. In FRIDA, the number of nutrients with a quantity

larger than 0 is one-third of the total amount of nutrients

studied, contrasting with the USDA database in which only half

of the nutrients are quantified as 0. This depicts a very different

scenario in terms of micronutrients present in vegetable oils

depending on the database analyzed.

The rest of the databases contain much less information

than the first two. The smallest ones (NIGERIA and SMILING)

focus specifically on regional foods, and thus it is expected that

these datasets do not report much information on vegetable oils

that are not common in these countries. It is also interesting to

note that while FooDB contains information about thousands

of chemical compounds, the quality of said information is

relatively low since the actual amount of quantified compounds

per vegetable oil is even lower than in the FCDBs that it uses

as source. The low quality of the metadata—if present—is also a

major problem, as it is usually impossible to know the analytical

procedure used, the cultivar, variety or simply the species of the

element.

Lastly, we must note that we have not included EuroFIR due

to the heterogeneity of its data. Currently, the database has a set

of guidelines that contributors have to follow when uploading

information to the system, but that does not guarantee that they

will follow them, nor that the original information has sufficient

quality (27). For instance, the number of countries reporting

information is quite variable: 36 for olive oil; 30 for sunflower

oil; 22 for palm oil; 22 for coconut oil; 21 for peanut oil; 13

for soybean oil; and 9 for cottonseed oil (note that EuroFIR

now includes some non-European countries). Regarding the

quality of the documentation, even though EuroFIR requires

information on the analytical method used to measure the

composition, in most cases, it is reported as “unknown.”

Similarly, it is mandatory to provide the source of the data, but in

many cases, it is either not reported or not well-described (e.g.,

“No change from USDA”). Even though the platform is a huge

step forward in the right direction, there are still many values

that are not fully comparable (14). Solving these issues is beyond

the scope of our paper, and thus we have not included it in the

subsequent analysis.

3.2. Qualitative comparison

Next, we look at the age of the information to evaluate the

validity of the data. From a broader perspective, the problem

of outdated information can be related to the issue of data

obsolescence. Obsolescence refers to the appearance of a new
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piece of information that supersedes an existing one that is

still available (75). Some authors propose the use of machine-

learning techniques to detect when data becomes obsolete

or contradicts previous knowledge (76). In our context, as

previously discussed, the composition of food is continuously

changing as a consequence of both natural and human

interventions. Besides, analytical techniques keep improving,

giving more detailed and precise estimations. As such, it is

important to both keep the databases updated and, at the same

time, store the old information so that dietary studies carried out

in the past can use the proper composition.

From the databases analyzed, only USDA, BEDCA, FRIDA,

and TBCA provide detailed information on the year when the

content was measured. In the subsequent analysis, for USDA,

we considered only SR Legacy, when available, so as to be able

to analyze the dates of all compounds separately. Yet, note that

when the data are extracted from a scientific publication, the

date that is associated is the one when it was published, not when

the product was actually analyzed. Thus, unless it comes from

direct estimation, any value might have been measured at the

depicted date or before. In fact, many compounds share the same

date, but that is because they were extracted from a compilation

or a database published in that year and not because they were

measured in that year.

Figure 2 shows the number of compounds classified by the

decade corresponding to the listed year in their source. As we

can see, the information tends to be decades old, questioning

its validity. The selected USDA database does not contain any

information collected after 2010, except for coconut oil which

was substantially updated in 2015. Similarly, all the information

contained in BEDCA comes from the decade of 2000. A closer

inspection reveals that most information comes from either a

book published in 2004 or from the USDA database that was

available back then. Yet, as we can see, even though they used the

version that was available at the time, the information contained

there could already be decades old. For the FRIDA database, we

observe that most of the information comes from three different

dates separated by a decade, signaling that the speed of the

updates is relatively low. Lastly, TBCA is the most updated one,

which is to be expected since it started in the decade of 2010 and

most of the information comes from direct analyses.

Yet, a closer inspection reveals more weaknesses. For

instance, focusing on the case of palm oil, we observe that in the

USDA database most of the information comes either from 1979

or from the early 2000s, with the last update in 2009 (folate).

It is important to note that the values which are assumed to

be 0 are usually not updated, explaining why there are so many

compounds that have not been updated since 1979 in Figure 2A.

Note also that, as previously discussed, a value of 0 might mean

different things in each database: below detection limits, not

analyzed, assumed to be 0, etc. In Figure 2B, when we remove

those elements whose concentration is reported as 0, we observe

an important reduction of compounds with information from

that period. A similar result was found for FRIDA, with the

majority of the data also included in two dates. In the case of

TBCA, even though the source is supposed to be recent, there

are several compounds whose information was extracted from

the USDA in 2017. Given that the USDA has not updated the

information on palm oil since 2009, the information contained

in TBCA is actually a decade older than reported. All in all, if we

consider USDA, FRIDA and BEDCA, 57.9% of the information

was collected before 1990 and the remaining before 2010.

3.3. Quantitative comparison

In Figure 3 we show the fatty acid composition of the oils

contained in the USDA. Specifically, canola, coconut, peanut,

soybean, and sunflower oils are from Foundation foods, palm,

palm kernel, and olive oils are from SR Legacy, and cottonseed

oil is from Survey Foods (FNDDS). As expected, each vegetable

oil has a very different composition, which highlights why it

is so important to have precise information about as many

foods as possible. If a product is substituted simply with one

that seems similar, one may incur in important errors when

estimating the actual intake. Having extensive documentation

is also very important to understand the information. For

instance, common sunflower oil usually has a concentration

of 20% monounsaturated fatty acids, which contrasts with the

60% reported in the USDA. A closer inspection of this database

shows that the value is the average of eight samples, two of

which have about 20% of MUFA and six with around 75–80%.

In other words, they are averaging the composition of two

samples of common sunflower oil and 6 samples of high oleic

sunflower oil. If the information on individual samples is not

available, it is impossible to understand the origin of certain

discrepancies, and any estimation done with these values might

be biased.

Following the previous example of palm oil, we now look

at the composition in terms of fatty acids in the databases

explored in the previous section (Figure 4). It is worth noting

that for BEDCA the sum of all fatty acids is 100.94 g

per 100 g, a common inconsistency found in FCDBs that

extract their information from a combination of scientific

publications. Furthermore, the only components that are not

0 are fatty acids and alpha-tocopherol. In contrast, the sum

of all fatty acids in the USDA and Frida databases is 95.4

g per 100 g, and they also report the presence of vitamin

K.

At first glance, all databases share similar values. However,

upon closer inspection, one can see that the amount of

polyunsaturated fatty acids reported by TBCA is 78% higher

than the one in USDA and FRIDA. As previously discussed,

there are many factors that can alter the composition of

a product. Regarding the source material, different species

will have different nutrient contents, and even within the
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FIGURE 2

Date associated with each compound or nutrient in the selected databases that provide said information. For each vegetable oil, the length of

the bar indicates the number of compounds, while the color represents the amount of them that have an associated date within a decade. Palm

kernel is not included as it is only reported in FRIDA and USDA. (A) The information for all elements present in the database, regardless of their

actual value, while (B) shows the information only for those with a reported quantity larger than 0.

FIGURE 3

Comparison of fatty acids among di�erent oils in the USDA database. The values are shown as the percentage out of 100 g of the product.

MUFA, PUFA, and SFA represent monounsaturated, polyunsaturated, and saturated fatty acids, respectively. Other compounds denote elements

that were not described in the database and that would be necessary to reach 100%.
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FIGURE 4

Comparison of fatty acids in palm oil among di�erent FCDBs. The values are shown as the percentage out of 100 g of the product. MUFA, PUFA,

and SFA represent monounsaturated, polyunsaturated, and saturated fatty acids, respectively. Other compounds denote elements that were not

described in the database and that would be necessary to reach 100%.

same species the composition may change substantially from

cultivar to cultivar (2). Besides, the particular season when

it was harvested, or the production processes can also alter

the composition. Thus, the main concern is not that the

values are different but that there is no information in the

databases that allows one to determine what could be their

cause. One solution to this problem would be to include

additional metadata with information on species, variety,

cultivar, etc.

Another example is the reported concentration of palmitic

acid. A study from 1973 showed that samples from Zaire,

Indonesia, and Malaysia contained, on average, 42, 48.6, and

49.2 g, respectively (77). In contrast, in the FCDBs considered

the concentrations are much closer to one another: 43.50

g for USDA; 43.68 g for FRIDA; and 43.04 g for BEDCA

(TBCA does not report the quantity of this fatty acid). This

may be caused by the importation of palm oil from the same

area, which would explain the similarities. However, it signals

that the values might be ill-suited for countries that may not

obtain it from the same source. Lastly, even though it was

not included directly in the analysis, if we look at the value

reported by FooDB we get that the median concentration is

25.8 g, wildly different than in any other database. Fortunately,

it is possible to download the raw information, which reveals

that the website is averaging the values of both palm oil and

palm kernel oil, even though the latter has a completely different

composition.

4. The challenges for a Big Data
approach

As we have seen, FCDBs collect a lot of information

from scientific publications, and they may lose very valuable

information in the process. Besides, they also tend to neglect

biodiversity and the temporal and spatial dimensions of food

composition, weakening the conclusions that can be reached

using that data. One possibility to update and enrich the quality

of FCDBs would be to systematically review the literature and

extract as much information as possible, which can then be

studied using Big Data techniques—a task full of challenges.

Continuing with the example of palm oil, we can estimate the

number of scientific records that are relevant for this purpose

using the information of scientific records from Microsoft

Academic Graph (MAG) (78). In particular, we used the

version that contains publications up to 25th of June 2020,

provided by the CADRE project from Indiana University

(79). Considering the abstracts and titles, we recovered all

entries with the words “palm” or “elaeis” and “oil.” As a

result, we obtained 79,210 documents. Taking this information,

we created a network of citations between these documents.

Specifically, each document (e.g., a paper or a book) represents

a node in the network, and two documents are linked if they

reference each other. This allows us to classify documents

according to their content since papers that belong to the

same subfield tend to cite each other more. After removing

the nodes that are disconnected from the rest of the network

(they have no citations with any other documents of this

subset of scientific records), we end up with a network of

29,912 nodes. Next, we extract the communities from this

network (80, 81). In network science, communities are groups

of nodes which have much more connections between each

other than expected. Furthermore, we automatically assign

them descriptive labels using a topic modeling technique

(82, 83).

In Figure 5, we depict the communities obtained, ordered

in decreasing order according to their sizes. The keywords

within each community are ordered in decreasing order

for each community according to their importance. We

define importance as the difference between the normalized

frequencies of n-grams of a given community, and the

normalized frequencies of n-grams excluding it (an n-gram is

a set of n consecutive words in a text) (83). We can see clearly

that the keywords of community A—the largest one—are related

to food composition. In the case of community B, it seems to

be related to the processing and resulting waste. Community C

keywords can be related to the regions and plantations. In D, the

keywords are related to applications for palm oil, such as its use
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FIGURE 5

Visualization of the palm oil citation network. Scientific records that cite each other can form communities, signaling that they contain similar

information. Each color represents a community detected in the network and the labels are the keywords that determine the contents present

in the community. Communities are ordered according to their size, with A being the largest. This network was plotted using the software

implemented in Silva et al. (82).

for producing biodiesel, etc. Thus, one could focus on studying

the 2,293 publications belonging to community A.

The next step would require the application of advanced text

mining techniques that could extract the information contained

in the papers (84, 85). However, the unstructured nature of these

publications makes this a very complex task (86). Furthermore,

it is not clear if the results would be valuable enough. One

of the problems of Big Data is the high dimensionality

of the information, which brings noise accumulation and

may introduce spurious correlations. If the information is

of low quality, increasing the amount of papers will only

exacerbate these issues. Besides, aggregating information from

so many different sources will inevitably mix results obtained

in different locations, times and with different technologies,

which introduces further systematic biases and quality issues

(87). As such, simply extracting the pair nutrient - quantity is

not enough. Instead, it is necessary also to determine exactly how

the sample was analyzed, its specific variety, when and where it

was harvested/produced, etc. Not only this represents a much

harder task, but it also may not be achievable since much of this

metadata might not be contained in the own publication in the

first place (88).
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Among the AI approaches, Natural Language Processing

(NLP) techniques (89) are particularly useful because they

can help extract information from the scientific literature.

Additionally, recommendation systems have been explicitly

created to retrieve and filter scientific papers, which can combine

information of different natures (e.g., citation network and

paper content) (90). With a set of documents adequately

selected, it may be easier for specialists to extract and validate

data from the literature. However, one can also automatically

look into the content of the papers using NLP. Many techniques

have been used to extract and represent the semantics of the

texts. Some successfully used methods are the embeddings (91–

93), such as word2vec (92) and doc2vec (93), which represent

words and documents, respectively. More recently, transformers

were proposed (94). Among the most successful ones are

the Bidirectional Encoder Representations from Transformers

(BERT) (95) and the Generative Pre-trained Transformer

3 (GPT-3) (96), which can be used as part of systems

devoted to retrieving information from documents of different

domains (97–101). As such, developing and extending these

approaches to assist in constructing better FCDBs is a promising

area of research that could help to improve our knowledge about

food, nutrition and health (42).

5. Conclusion

The decade of 1980 kicked off a global effort to homogenize

and standardize the way in which nutritional composition is

collected in order to make meaningful comparisons between

countries. Since then, initiatives like INFOODS or EuroFIR have

established very clear guidelines and best practices that should be

followed to properly obtain, document, store and share this type

of data. However, many times, probably due to a lack of funding,

these guidelines are not fully adhered to. Furthermore, the end

users of these data are usually not fully aware of its limitations

and many times complement it with information extracted from

sources that are not totally compatible. This may lead to wrong

conclusions and misguided policies, with impacts that can take

years to fix.

In the age of data, it is more important than ever to ensure

that it is correctly captured and displayed. In this contribution,

we have discussed thatmost FCDBs already havemany problems

with the little information they report. In the particular case of

vegetable oils, we have demonstrated that missing information

is not always handled properly, that many sources commonly

used are old (see Supplementary Table 1) or have mistakes in

them (assuming that the source is provided, which is not

always the case), and that the quantitative composition can

either vary a lot or not at all, without knowing the reasons

behind that. This problem is also present in the global scientific

literature, not only in FCDBs, which hinders the possibility

of reaching precision nutrition. Initiatives such as Foundation

foods from USDA are heading in the right direction, but the

effort should be much more global and, importantly, sustained

in time.

In terms of FCDBs and artificial intelligence (AI), there are

two crucial points. The first issue is the urge for good quality

data to train AI models properly, and the second is how AI

can help feed these databases. Both aspects are related and

interdependent because without having data, it is challenging

to train models, and without good models, it is much more

demanding to enhance the databases. In this paper, we have

shown a perspective on the amount of scientific data that

has to be processed to extract information regarding a single

food item, palm oil, if one wants to scan the information

already present in the literature. If this is to be done for

many food items, the volume and challenges will increase even

further. Nonetheless, we expect that the development of AI in

food-related research can positively impact the overall quality

of FCDBs, as it has done in other areas of nutrition (102,

103).

There will be many new challenges in this process. This

type of analysis will require the collaboration of researchers

from different knowledge areas, including network science,

neural language processing, food chemistry or nutrition. For

the development of new machine learning approaches, it will

be essential to include experts in food composition data to

evaluate the quality of the information and guarantee the

overall quality of the database. As noted, this is a complex

task, and the problems related to FCDBs can only be mitigated

if experts in many areas put their efforts together. A related

problem is the necessity of new funding opportunities for

interdisciplinary research projects. Even though large funding

agencies actively encourage proposals that cross disciplinary

boundaries, in practice most funded projects remain firmly in

a disciplinary framework (104).

To conclude, nowadays, the sustainability of the food system

is being questioned in the pursuit of the SDGs. Food production

is closely related to public health and the environment, and

proper knowledge of what we eat is key to improve both.

The lack of information on many aspects, such as food

fortification or biodiversity is inevitably hindering the progress

toward a better food system. Besides, climate change is already

having a measurable effect on crops, and not only it will

increase in the future, but as we adapt to it, our consumption

patterns might change. To mitigate possible further nutritional

problems and to solve the ones that we already have, gathering

and curating much more and better data is imperative. As

the food sector digitizes, it is essential to acknowledge the

importance of pursuing a holistic view of nutrition and to

move toward a data-driven food system. Only then relevant

players will be able to issue evidence-based and timely policy

recommendations.
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methodology for missing-data imputation in food composition databases.Appl Sci.
(2019) 9:4111. doi: 10.3390/app9194111

24. Van Puyvelde H, Perez-Cornago A, Casagrande C, Nicolas G, Versele V, Skeie
G, et al. Comparing calculated nutrient intakes using different food composition
databases: results from the European prospective investigation into cancer and
nutrition (EPIC) cohort. Nutrients. (2020) 12:2906. doi: 10.3390/nu12102906

25. Ocké MC, Westenbrink S, van Rossum CT, Temme EH, van der Vossen-
Wijmenga W, Verkaik-Kloosterman J. The essential role of food composition
databases for public health nutrition – experiences from the Netherlands. J Food
Compos Anal. (2021) 101:103967. doi: 10.1016/j.jfca.2021.103967

26. Ferland G. The discovery of vitamin K and its clinical applications. Ann Nutr
Metab. (2012) 61:213–8. doi: 10.1159/000343108

27. Westenbrink S, Kadvan A, Roe M, Seljak BK, Mantur-Vierendeel A, Finglas
P. 12th IFDC 2017 special issue-evaluation of harmonized EuroFIR documentation
for macronutrient values in 26 European food composition databases. J Food
Compos Anal. (2019) 80:40–50. doi: 10.1016/j.jfca.2019.03.006

28. Grande F, Giuntini EB, Lajolo FM, de Menezes EW. How do calculation
method and food data source affect estimates of vitamin A content in foods and
dietary intake? J Food Compos Anal. (2016) 46:60–9. doi: 10.1016/j.jfca.2015.11.006

29. Haggarty P. UK introduces folic acid fortification of flour to prevent neural
tube defects. Lancet. (2021) 398:1199–201. doi: 10.1016/S0140-6736(21)02134-6

30. Olson R, Gavin-Smith B, Ferraboschi C, Kraemer K. Food fortification: the
advantages, disadvantages and lessons from sight and life programs. Nutrients.
(2021) 13:1118. doi: 10.3390/nu13041118

31. de Jong MH, Nawijn EL, Verkaik-Kloosterman J. Contribution of voluntary
fortified foods to micronutrient intake in The Netherlands. Eur J Nutr. (2022)
61:1649–63. doi: 10.1007/s00394-021-02728-4

32. Verkaik-Kloosterman J, Seves SM, Ocké MC. Vitamin D concentrations
in fortified foods and dietary supplements intended for infants:
implications for vitamin D intake. Food Chem. (2017) 221:629–35.
doi: 10.1016/j.foodchem.2016.11.128

33. Patterson KY, Phillips KM, Horst RL, Byrdwell WC, Exler J, Lemar LE,
et al. Vitamin D content and variability in fluid milks from a US department of
agriculture nationwide sampling to update values in the national nutrient database
for standard reference. J Dairy Sci. (2010) 93:5082–90. doi: 10.3168/jds.2010-3359

34. Christensen T, Saxholt E, Pilegaard K, Trolle E, Knuthsen P, Virtanen S, et al.
Nordic co-operation on Food information. Activities of the Nordic Food Analysis
Network 2013-2016. Nordic Council of Ministers, TemaNor (2017). Available
online at: https://www.duo.uio.no/handle/10852/60710 (accessed June 01, 2022).

35. GFDx. Gloal Status of Food Fortification Compliance or Quality. Global
Fortification Data Exchange (2021). Available online at: https://fortificationdata.
org (accessed June 01, 2022).

36. Mkambula P, Mbuya MNN, Rowe LA, Sablah M, Friesen VM, Chadha M,
et al. The unfinished agenda for food fortification in low- and middle-income
countries: quantifying progress, gaps and potential opportunities.Nutrients. (2020)
12:354. doi: 10.3390/nu12020354

37. Westenbrink S, van der Vossen-Wijmenga W, Toxopeus I, Milder
I, Ocké M. LEDA, the branded food database in the Netherlands: data
challenges and opportunities. J Food Compos Anal. (2021) 102:104044.
doi: 10.1016/j.jfca.2021.104044

38. Bland JS. The dark matter of nutrition: dietary signals beyond traditional
nutrients. Integrat Med Clin J. (2019) 18:12. Available online at: https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC6601448/# (accessed June 01, 2022).

39. Teng Y, Ren Y, SayedM, Hu X, Lei C, Kumar A, et al. Plant-Derived exosomal
MicroRNAs shape the gut microbiota. Cell Host Microbe. (2018) 24:637–52.e8.
doi: 10.1016/j.chom.2018.10.001

40. Sarkadi LS. Amino acids and biogenic amines as food quality factors. Pure
Appl Chem. (2019) 91:289–300. doi: 10.1515/pac-2018-0709

41. FooDB. Listing Compounds - FooDB (2022). Available online at: https://foodb.
ca/compounds (accessed June 1, 2022).

42. Barabsi AL, Menichetti G, Loscalzo J. The unmapped chemical complexity of
our diet. Nat Food. (2020) 1:33–7. doi: 10.1038/s43016-019-0005-1

43. Phenol-Explorer.Database on Polyphenol Content in Foods - Phenol-Explorer.
(2022). Available online at: http://phenol-explorer.eu (accessed November 25,
2022).

44. Durazzo A, Astley S, Kapsokefalou M, Costa HS, Mantur-Vierendeel A,
Pijls L, et al. Food composition data and tools online and their use in research
and policy: EuroFIR AISBL contribution in 2022. Nutrients. (2022) 14:4788.
doi: 10.3390/nu14224788

45. World Health Organization. Using Third-Party Food Sales and Composition
Databases to Monitor Nutrition Policies. World Health Organization Regional
Office for Europe (2021). Available online at: https://apps.who.int/iris/handle/
10665/339075 (accessed June 01, 2022).

46. Harrington RA, Adhikari V, RaynerM, Scarborough P. Nutrient composition
databases in the age of big data: foodDB, a comprehensive, real-time database
infrastructure. BMJ Open. (2019) 9:e026652. doi: 10.1136/bmjopen-2018-026652

47. Sissener NH, Suarez RK, Hoppeler HH. Are we what we eat? Changes to the
feed fatty acid composition of farmed salmon and its effects through the food chain.
J Exp Biol. (2018) 221 (Suppl_1):jeb161521. doi: 10.1242/jeb.161521

48. Carnovale E, Nicoli S. Changes in fatty acid composition in beef in Italy. J
Food Compos Anal. (2000) 13:505–10. doi: 10.1006/jfca.2000.0908

49. Gnagnarella P, Parpinel M, Salvini S, Franceschi S, Palli D, Boyle P. The
update of the Italian food composition database. J Food Compos Anal. (2004)
17:509–22. doi: 10.1016/j.jfca.2004.02.009

50. Hulshof KF, Beemster CJ, Westenbrink S, Lwik MR. Reduction in fat intake
in The Netherlands: the influence of food composition data. Food Chem. (1996)
57:67–70. doi: 10.1016/0308-8146(96)00076-3

51. Grande F, Vincent A. The importance of food composition data for estimating
micronutrient intake: What do we know now and into the future? In: Global
Landscape of Nutrition Challenges in Infants and Children. Vol. 93. Basel: Karger
Publishers (2020). p. 39–50.

52. Englberger L. Revisiting the vitamin A fiasco: going local in Micronesia. In:
Burlingame B, Dernini S, editors. Sustainable Diets and Biodiversity: Directions and
Solutions for Policy, Research and Action. Rome: FAO (2012). p. 126–33.

53. Toledo A, Burlingame B. Biodiversity and nutrition: a common path toward
global food security and sustainable development. J Food Compos Anal. (2006)
19:477–83. doi: 10.1016/j.jfca.2006.05.001

54. Burlingame B, Charrondiere R, Mouille B. Food composition is fundamental
to the cross-cutting initiative on biodiversity for food and nutrition. J Food Compos
Anal. (2009) 22:361–5. doi: 10.1016/j.jfca.2009.05.003

55. Charrondire UR, Stadlmayr B, Rittenschober D, Mouille B, Nilsson E,
Medhammar E, et al. FAO/INFOODS food composition database for biodiversity.
Food Chem. (2013) 140:408–12. doi: 10.1016/j.foodchem.2012.08.049

56. FAO. FAO/INFOODS Food Composition Database for Biodiversity Version 4.0
- BioFoodComp 4.0). FAO (2017).

57. Scheelbeek Pauline FD, Bird Frances A, Tuomisto Hanna L,
Rosemary G, Harris Francesca B, Joy Edward JM, et al. Effect of
environmental changes on vegetable and legume yields and nutritional
quality. Proc Natl Acad Sci USA. (2018) 115:6804–9. doi: 10.1073/pnas.18004
42115

58. Bisbis MB, Gruda N, Blanke M. Potential impacts of climate change on
vegetable production and product quality - a review. J Cleaner Prod. (2018)
170:1602–20. doi: 10.1016/j.jclepro.2017.09.224

59. Broberg MC, Hagy P, Pleijel H. CO2-Induced changes in wheat grain
composition: meta-analysis and response functions. Agronomy. (2017) 7:32.
doi: 10.3390/agronomy7020032

60. Leisner CP. Review: climate change impacts on food security- focus on
perennial cropping systems and nutritional value. Plant Sci. (2020) 293:110412.
doi: 10.1016/j.plantsci.2020.110412

61. INFOODS. INFOODS: Tables and Databases. (2022). Available online
at: https://www.fao.org/infoods/infoods/tables-and-databases/en (accessed
November 23, 2022).

62. BEDCA. Base de Datos Espaola de Composicin de Alimentos. (2021). Available
online at: https://www.bedca.net (accessed November 21, 2021).

63. Samaniego-Vaesken ML, Alonso-Aperte E, Varela-Moreiras G. Voluntary
fortification with folic acid in Spain: an updated food composition database. Food
Chem. (2016) 193:148–53. doi: 10.1016/j.foodchem.2014.06.046

64. San Mauro Martín I, Hernández Rodríguez B. Herramientas
para la calibración de menús y cálculo de la composición nutricional
de los alimentos: validez y variabilidad. Nutr Hosp. (2014) 29:929–34.
doi: 10.3305/nh.2014.29.4.7096

Frontiers inNutrition 14 frontiersin.org

https://doi.org/10.3389/fnut.2022.1052934
https://doi.org/10.1016/j.endien.2018.05.011
https://doi.org/10.3390/nu11081714
https://doi.org/10.1016/j.fct.2020.111368
https://doi.org/10.3390/app9194111
https://doi.org/10.3390/nu12102906
https://doi.org/10.1016/j.jfca.2021.103967
https://doi.org/10.1159/000343108
https://doi.org/10.1016/j.jfca.2019.03.006
https://doi.org/10.1016/j.jfca.2015.11.006
https://doi.org/10.1016/S0140-6736(21)02134-6
https://doi.org/10.3390/nu13041118
https://doi.org/10.1007/s00394-021-02728-4
https://doi.org/10.1016/j.foodchem.2016.11.128
https://doi.org/10.3168/jds.2010-3359
https://www.duo.uio.no/handle/10852/60710
https://fortificationdata.org
https://fortificationdata.org
https://doi.org/10.3390/nu12020354
https://doi.org/10.1016/j.jfca.2021.104044
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601448/#
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601448/#
https://doi.org/10.1016/j.chom.2018.10.001
https://doi.org/10.1515/pac-2018-0709
https://foodb.ca/compounds
https://foodb.ca/compounds
https://doi.org/10.1038/s43016-019-0005-1
http://phenol-explorer.eu
https://doi.org/10.3390/nu14224788
https://apps.who.int/iris/handle/10665/339075
https://apps.who.int/iris/handle/10665/339075
https://doi.org/10.1136/bmjopen-2018-026652
https://doi.org/10.1242/jeb.161521
https://doi.org/10.1006/jfca.2000.0908
https://doi.org/10.1016/j.jfca.2004.02.009
https://doi.org/10.1016/0308-8146(96)00076-3
https://doi.org/10.1016/j.jfca.2006.05.001
https://doi.org/10.1016/j.jfca.2009.05.003
https://doi.org/10.1016/j.foodchem.2012.08.049
https://doi.org/10.1073/pnas.1800442115
https://doi.org/10.1016/j.jclepro.2017.09.224
https://doi.org/10.3390/agronomy7020032
https://doi.org/10.1016/j.plantsci.2020.110412
https://www.fao.org/infoods/infoods/tables-and-databases/en
https://www.bedca.net
https://doi.org/10.1016/j.foodchem.2014.06.046
https://doi.org/10.3305/nh.2014.29.4.7096
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Ferraz de Arruda et al. 10.3389/fnut.2022.1052934

65. FRIDA. FRIDA Food Data, Version 4, 2019. National Food Institute,
Techincal University of Denmark (2021). Available online at: https://frida.
fooddata.dk (accessed June 26, 2022).

66. Delgado A, Issaoui M, Vieira MC, Saraiva de Carvalho I, Fardet A. Food
composition databases: does it matter to human health? Nutrients. (2021) 13:2816.
doi: 10.3390/nu13082816

67. USDA. Food Data Central. (2021). Available online at:
https://fdc.nal.usda.gov (accessed November 21, 2021).

68. TBCA. Tabela Brasileira de Composição de Alimentos (TBCA). Universidade
de São Paulo (USP). Version 7.1. São Paulo: Food Research Center (2021). Available
online at: http://www.fcf.usp.br/tbca (accessed June 26, 2022).

69. NIGERIA. Nigeria Food Database. (2021). Available online at: http://
nigeriafooddata.ui.edu.ng (accessed November 21, 2021).

70. SMILING. SMILING/IRDSMILING. (2021). Available online at: http://www.
nutrition-smiling.eu (accessed November 21, 2021).

71. Hulshof P, Doets E, Seyha S, Bunthang T, Vonglokham M, Kounnavong S,
et al. Food composition tables in southeast Asia: the contribution of the SMILING
project.Matern Child Health J. (2019) 23:46–54. doi: 10.1007/s10995-018-2528-8

72. Fukagawa NK, McKillop K, Pehrsson PR, Moshfegh A, Harnly J, Finley J.
USDA’s FoodData central: what is it and why is it needed today? Am J Clin Nutr.
(2022) 115:619–24. doi: 10.1093/ajcn/nqab397

73. EuroFIR. EuroFIR Association International Sans But-Lucratif. Annual Report
2015. Parma: EuroFIR (2016).

74. USDA. Oilseeds: World Markets and Trade. United States Department of
Agriculture (2022). Available online: https://apps.fas.usda.gov/psdonline/circulars/
oilseeds.pdf (accessed June 1, 2022).

75. Mellal MA. Obsolescence-A review of the literature. Technol Soc. (2020)
63:101347. doi: 10.1016/j.techsoc.2020.101347

76. Grichi Y, Beauregard Y, Dao TM. An approach to obsolescence forecasting
based on hidden Markov model and compound poisson process. Int J Indust Eng.
(2019) 1:111–24. doi: 10.46254/j.ieom.20190202

77. Clegg AJ. Composition and related nutritional and organoleptic aspects of
palm oil. J Am Oil Chem Soc. (1973) 50:321–4. doi: 10.1007/BF02641365

78. Sinha A, Shen Z, Song Y, Ma H, Eide D, Hsu BJP, et al. An
overview of microsoft academic service (MAS) and applications. In: WWW 15
Companion: Proceedings of the 24th International Conference on World Wide
Web. New York, NY: Association for Computing Machinery (2015). p. 243–6.
doi: 10.1145/2740908.2742839

79. Mabry PL, Yan X, Pentchev V, Van Rennes R, McGavin SH, Wittenberg
JV. CADRE: a collaborative, cloud-based solution for big bibliographic
data research in academic libraries. Front Big Data. (2020) 3:556282.
doi: 10.3389/fdata.2020.556282

80. Rosvall M, Axelsson D, Bergstrom CT. The map equation. Eur Phys J Spec
Top. (2009) 178:13–23. doi: 10.1140/epjst/e2010-01179-1

81. Martin R, Bergstrom Carl T. Maps of random walks on complex networks
reveal community structure. Proc Natl Acad Sci USA. (2008) 105:1118–23.
doi: 10.1073/pnas.0706851105

82. Silva FN, Amancio DR, Bardosova M, da Fontoura Costa L, Novais de
Oliveira O Jr. Using network science and text analytics to produce surveys in a
scientific topic. J Informetr. (2016) 10:487–502. doi: 10.1016/j.joi.2016.03.008

83. Ceribeli C, Ferraz de Arruda H, da Fontoura Costa L. How coupled
are capillary electrophoresis and mass spectrometry? Scientometrics. (2021)
126:3841–51. doi: 10.1007/s11192-021-03923-0

84. Westergaard D, Strfeldt HH, TAnsberg C, Jensen LJ, Brunak
S. A comprehensive and quantitative comparison of text-mining
in 15 million full-text articles versus their corresponding abstracts.
PLoS Comput Biol. (2018) 14:e1005962. doi: 10.1371/journal.pcbi.10
05962

85. Pulla P. The plan to mine the world’s research papers. Nature. (2019)
571:316–318. doi: 10.1038/d41586-019-02142-1

86. Hooton F, Menichetti G, Barabsi AL. Exploring food contents
in scientific literature with FoodMine. Sci Rep. (2020) 10:16191.
doi: 10.1038/s41598-020-73105-0

87. Fan J, Han F, Liu H. Challenges of big data analysis.Natl Sci Rev. (2014) 1:293.
doi: 10.1093/nsr/nwt032

88. Gossner CME, Schlundt J, Embarek PB, Hird S, Lo-Fo-Wong D, Beltran JJO,
et al. The melamine incident: implications for international food and feed safety.
Environ Health Perspect. (2009) 117:1803. doi: 10.1289/ehp.0900949

89. Eisenstein J. Introduction to natural language processing. Cambridge, MA:
MIT Press (2019)

90. Bai X, Wang M, Lee I, Yang Z, Kong X, Xia F. Scientific
paper recommendation: a survey. IEEE Access. (2019) 7:9324–39.
doi: 10.1109/ACCESS.2018.2890388

91. Pennington J, Socher R, Manning CD. Glove: global vectors for
word representation. In: Proceedingsă of the 2014 Conference on Empirical
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